## Exercise 220

A race car is accelerating at a velocity given by $v(t)=\frac{25}{4} t+54$, where $v$ is the velocity (in feet per second) at time $t$.
a. Find the velocity of the car at 10 sec .
b. Find the inverse function.
c. Use part b. to determine how long it takes for the car to reach a speed of $150 \mathrm{ft} / \mathrm{sec}$.

## Solution

Part (a)
Plug in $t=10$ to the given function for $v(t)$ to determine the car's velocity at 10 seconds.

$$
t=10 \quad \Rightarrow \quad v(10)=\frac{25}{4}(10)+54=116.5 \frac{\mathrm{ft}}{\mathrm{sec}}
$$

Part (b)
Solve the given function,

$$
v(t)=\frac{25}{4} t+54
$$

for $t$.

$$
\begin{gathered}
v=\frac{25}{4} t+54 \\
v-54=\frac{25}{4} t \\
4(v-54)=25 t \\
\frac{4}{25}(v-54)=t
\end{gathered}
$$

Therefore, the function that converts from velocity to time is

$$
v^{-1}(v)=\frac{4}{25}(v-54) .
$$

## Part (c)

Plug in $v=150$ to the inverse function to find how long it takes to reach a speed of $150 \mathrm{ft} / \mathrm{sec}$.

$$
v=150 \quad \Rightarrow \quad v^{-1}(150)=\frac{4}{25}(150-54)=15.36 \mathrm{sec}
$$

Therefore, it takes 15.36 seconds for the car to reach a speed of $150 \mathrm{ft} / \mathrm{sec}$.

